Control.Applicative
#Applicative
class Applicative :: (Type -> Type) -> Constraint
class (Apply f) <= Applicative f where
The Applicative
type class extends the Apply
type class
with a pure
function, which can be used to create values of type f a
from values of type a
.
Where Apply
provides the ability to lift functions of two or
more arguments to functions whose arguments are wrapped using f
, and
Functor
provides the ability to lift functions of one
argument, pure
can be seen as the function which lifts functions of
zero arguments. That is, Applicative
functors support a lifting
operation for any number of function arguments.
Instances must satisfy the following laws in addition to the Apply
laws:
- Identity:
(pure identity) <*> v = v
- Composition:
pure (<<<) <*> f <*> g <*> h = f <*> (g <*> h)
- Homomorphism:
(pure f) <*> (pure x) = pure (f x)
- Interchange:
u <*> (pure y) = (pure (_ $ y)) <*> u
Members
pure :: forall a. a -> f a
Instances
#liftA1
liftA1 :: forall f a b. Applicative f => (a -> b) -> f a -> f b
liftA1
provides a default implementation of (<$>)
for any
Applicative
functor, without using (<$>)
as provided
by the Functor
-Applicative
superclass
relationship.
liftA1
can therefore be used to write Functor
instances
as follows:
instance functorF :: Functor F where
map = liftA1
#unless
unless :: forall m. Applicative m => Boolean -> m Unit -> m Unit
Perform an applicative action unless a condition is true.
#when
when :: forall m. Applicative m => Boolean -> m Unit -> m Unit
Perform an applicative action when a condition is true.
Re-exports from Control.Apply
#Apply
class Apply :: (Type -> Type) -> Constraint
class (Functor f) <= Apply f where
The Apply
class provides the (<*>)
which is used to apply a function
to an argument under a type constructor.
Apply
can be used to lift functions of two or more arguments to work on
values wrapped with the type constructor f
. It might also be understood
in terms of the lift2
function:
lift2 :: forall f a b c. Apply f => (a -> b -> c) -> f a -> f b -> f c
lift2 f a b = f <$> a <*> b
(<*>)
is recovered from lift2
as lift2 ($)
. That is, (<*>)
lifts
the function application operator ($)
to arguments wrapped with the
type constructor f
.
Put differently...
foo =
functionTakingNArguments <$> computationProducingArg1
<*> computationProducingArg2
<*> ...
<*> computationProducingArgN
Instances must satisfy the following law in addition to the Functor
laws:
- Associative composition:
(<<<) <$> f <*> g <*> h = f <*> (g <*> h)
Formally, Apply
represents a strong lax semi-monoidal endofunctor.
Members
apply :: forall a b. f (a -> b) -> f a -> f b
Instances
#(<*>)
Operator alias for Control.Apply.apply (left-associative / precedence 4)
#(<*)
Operator alias for Control.Apply.applyFirst (left-associative / precedence 4)
#(*>)
Operator alias for Control.Apply.applySecond (left-associative / precedence 4)
Re-exports from Data.Functor
#Functor
class Functor :: (Type -> Type) -> Constraint
class Functor f where
A Functor
is a type constructor which supports a mapping operation
map
.
map
can be used to turn functions a -> b
into functions
f a -> f b
whose argument and return types use the type constructor f
to represent some computational context.
Instances must satisfy the following laws:
- Identity:
map identity = identity
- Composition:
map (f <<< g) = map f <<< map g
Members
map :: forall a b. (a -> b) -> f a -> f b
Instances
#void
void :: forall f a. Functor f => f a -> f Unit
The void
function is used to ignore the type wrapped by a
Functor
, replacing it with Unit
and keeping only the type
information provided by the type constructor itself.
void
is often useful when using do
notation to change the return type
of a monadic computation:
main = forE 1 10 \n -> void do
print n
print (n * n)
#(<$>)
Operator alias for Data.Functor.map (left-associative / precedence 4)
#(<$)
Operator alias for Data.Functor.voidRight (left-associative / precedence 4)
#(<#>)
Operator alias for Data.Functor.mapFlipped (left-associative / precedence 1)
#($>)
Operator alias for Data.Functor.voidLeft (left-associative / precedence 4)
Modules
- Control.Applicative
- Control.Apply
- Control.Bind
- Control.Category
- Control.Monad
- Control.Semigroupoid
- Data.Boolean
- Data.BooleanAlgebra
- Data.Bounded
- Data.Bounded.Generic
- Data.CommutativeRing
- Data.DivisionRing
- Data.Eq
- Data.Eq.Generic
- Data.EuclideanRing
- Data.Field
- Data.Function
- Data.Functor
- Data.Generic.Rep
- Data.HeytingAlgebra
- Data.HeytingAlgebra.Generic
- Data.Monoid
- Data.Monoid.Additive
- Data.Monoid.Conj
- Data.Monoid.Disj
- Data.Monoid.Dual
- Data.Monoid.Endo
- Data.Monoid.Generic
- Data.Monoid.Multiplicative
- Data.NaturalTransformation
- Data.Newtype
- Data.Ord
- Data.Ord.Down
- Data.Ord.Generic
- Data.Ord.Max
- Data.Ord.Min
- Data.Ordering
- Data.Ring
- Data.Ring.Generic
- Data.Semigroup
- Data.Semigroup.First
- Data.Semigroup.Generic
- Data.Semigroup.Last
- Data.Semiring
- Data.Semiring.Generic
- Data.Show
- Data.Show.Generic
- Data.Symbol
- Data.Unit
- Data.Void
- Foreign
- LocalDependency.Control.Alt
- LocalDependency.Control.Alternative
- LocalDependency.Control.Biapplicative
- LocalDependency.Control.Biapply
- LocalDependency.Control.Comonad
- LocalDependency.Control.Extend
- LocalDependency.Control.Lazy
- LocalDependency.Control.MonadPlus
- LocalDependency.Control.MonadZero
- LocalDependency.Control.Plus
- LocalDependency.Data.Bifoldable
- LocalDependency.Data.Bifunctor
- LocalDependency.Data.Bifunctor.Join
- LocalDependency.Data.Bitraversable
- LocalDependency.Data.Comparison
- LocalDependency.Data.Const
- LocalDependency.Data.Decidable
- LocalDependency.Data.Decide
- LocalDependency.Data.Distributive
- LocalDependency.Data.Divide
- LocalDependency.Data.Divisible
- LocalDependency.Data.Either
- LocalDependency.Data.Either.Inject
- LocalDependency.Data.Either.Nested
- LocalDependency.Data.Equivalence
- LocalDependency.Data.Exists
- LocalDependency.Data.Foldable
- LocalDependency.Data.FoldableWithIndex
- LocalDependency.Data.Functor.App
- LocalDependency.Data.Functor.Clown
- LocalDependency.Data.Functor.Compose
- LocalDependency.Data.Functor.Contravariant
- LocalDependency.Data.Functor.Coproduct
- LocalDependency.Data.Functor.Coproduct.Inject
- LocalDependency.Data.Functor.Coproduct.Nested
- LocalDependency.Data.Functor.Costar
- LocalDependency.Data.Functor.Flip
- LocalDependency.Data.Functor.Invariant
- LocalDependency.Data.Functor.Joker
- LocalDependency.Data.Functor.Product
- LocalDependency.Data.Functor.Product.Nested
- LocalDependency.Data.Functor.Product2
- LocalDependency.Data.FunctorWithIndex
- LocalDependency.Data.Identity
- LocalDependency.Data.Maybe
- LocalDependency.Data.Maybe.First
- LocalDependency.Data.Maybe.Last
- LocalDependency.Data.Monoid.Alternate
- LocalDependency.Data.Op
- LocalDependency.Data.Predicate
- LocalDependency.Data.Profunctor
- LocalDependency.Data.Profunctor.Choice
- LocalDependency.Data.Profunctor.Closed
- LocalDependency.Data.Profunctor.Cochoice
- LocalDependency.Data.Profunctor.Costrong
- LocalDependency.Data.Profunctor.Join
- LocalDependency.Data.Profunctor.Split
- LocalDependency.Data.Profunctor.Star
- LocalDependency.Data.Profunctor.Strong
- LocalDependency.Data.Semigroup.Foldable
- LocalDependency.Data.Semigroup.Traversable
- LocalDependency.Data.Traversable
- LocalDependency.Data.Traversable.Accum
- LocalDependency.Data.Traversable.Accum.Internal
- LocalDependency.Data.TraversableWithIndex
- LocalDependency.Data.Tuple
- LocalDependency.Data.Tuple.Nested
- LocalDependency.Effect
- LocalDependency.Safe.Coerce
- LocalDependency.Type.Equality
- LocalDependency.Unsafe.Coerce
- Prelude
- Prim
- Prim.Boolean
- Prim.Coerce
- Prim.Ordering
- Prim.Row
- Prim.RowList
- Prim.Symbol
- Prim.TypeError
- Record.Unsafe
- Safe.Coerce
- Test.Foreign
- Test.Main
- Test.MiraculixLite
- Test.MiraculixLite.Assertion
- Test.MiraculixLite.FFI
- Test.MiraculixLite.Summary
- Test.MiraculixLite.TestTree
- Test.MiraculixLite.Typo
- Type.Data.Row
- Type.Data.RowList
- Type.Proxy
- Unsafe.Coerce